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E X A C T  S O L U T I O N S  O F  T H E  E Q U A T I O N S  O F  V O R T E X  S H A L L O W  W A T E R  

A. A. C h e s n o k o v  UDC 532.591+517.958 

Exact solutions of the  equations of vortex shallow water were derived by Freeman [1] for simple waves. 
Sachdev and Varugheze [2] found a group of transformations tha t  are admi t ted  by a system of differential 
equations and some exact solutions. Stat ionary solutions with backward-flow regions were obtained by Varley 
and Blythe [3]. Teshukov [4] formulated hyperbolicity conditions for a system of equations of motion by 
generalizing this notion for a class of integro-differential equations proposed in [5]. 

The present paper is devoted to the construction of exact solutions of the integro-differential equations 
of vortex shallow water, which describe vortex flows of an ideal incompressible fluid with a free boundary in a 
gravity field in the  Euler-Lagrangian coordinate system. The  simpler subsystems tha t  determine the classes 
of exact solutions are given using a group of transformations that  are admi t ted  by the  system of equations 
considered, and some of these subsystems are integrated. Solutions that  describe the fluid motion with the 
formation of backward-flow regions are found in the unsteady-state  case. The  solution on which a system of 
integro-differential equations loses its hyperbolicity with t ime is given. 

1. T h e  M o d e l  o f  V o r t e x  S h a l l o w  W a t e r  a n d  A d m i s s i b l e  T r a n s f o r m a t i o n s .  The  solution of 
the boundary-value problem 

U T + U U X + V u y + h x = O ,  u x + v y = O ,  h T + u ( T ~ X , h ) h x = v ( T , X , h ) ,  v ( T , X , O ) = O  (1.1) 

describes, in the - o o  < X < oo, 0 <~ Y <~ h(T, X)  region, plane-parallel eddy motions of a layer of an ideal 
incompressible fluid with a free boundary Y = h(T, X )  in a gravity field in a shallow-water approximation 
[6]. System (1.1) is derived as a result of the nondimensionalization of the Euler equations and taking into 
account the fact that ,  for the  flows considered, the ratio of the characteristic vertical scale to the horizontal 
one is small. 

As is shown by Zakharov [7], with the change of variables 

T = t, X = z,  Y = ~ ( t , z , A )  (0~<A~<[) ,  (1.2) 

where the function r  z, A) is a solution of the Cauchy problem '~t+u(t,  z, ~)r  = v(t, z,  r and r z, A) = 
~0(x,A), one can map the flow region onto the band 0 <~ ~ ~< 1, - c r  < X < cr and the functions u(t ,x ,A)  
and H(t,  z,  A) = ~x are defined from the system 

1 

] Hr dA = O, Ht + Huz + uHx = O. ut + UUx + (1.3) 
0 

The change of variables (1.2) is invertible under the condition tha t  r # 0. Below, we assume that  ~ > 0 
[~( t ,x ,0)  = 0 and r  1) = h(t,x)]. In the absence of vorticity (w = - u y  = - u ~ H  -1 = 0), the model 
(1.3) is reduced to the known shallow-water equations. 

It is easy to see that  system (1.3) is invariant under  the transformation group Gs: (1) t' = t + a, 
(2) x' = x + a ,  (3) x' = a t + x  and u' = u + a ,  (4) t' = at and x' = ax, and (5) x' = ax, u' = au, and 
H' = a2H. Applying the me thod  proposed by Ovsyannikov [8], one can construct  invariant solutions based 
on the Lie algebra L5 of the  following operators: X1 = Or, X2 = Ox, X3 = tO~ + 0,~, X4 = tot + zc3x, and 
X5 = zc% + uO,, + 2HOH, which correspond to the transformations (1)-(5). 

Novosibirsk State University, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i 
Tekhnicheskaya Fizika, Vol. 38, No. 5, pp. 44-55, September-October ,  1997. Original article submit ted 
December 18, 1995; revision submit ted  March 25, 1996. 
692 0021-8944/97/3805-0692 $18.00 (~) 1998 Plenum Publishing Corporation 



For rational use of the available transformations, in finding invariant solutions, we give the optimal 
system of subalgebras of the Lie algebra of operators Ls, which are constructed using the algori thm given in [9]. 
All representatives of the optimal  system of rank-1 subalgebras are as follows: (1) aX4 + )(5, (2) X 2 -  )(4 + Xs, 
(3) Xl+Xs, (4) x3+x4, (5) x4, (6) xl+x3, (7) x3, (8) x~, and (9) X1. The system is opt imal  in the sense that  
the solutions obtained by means of its representatives give all possible invariant solutions, which correspond 
to one-parametric subgroups of the transformation group Gs up to the change of variables. The  subsequent 
construction of invariant solutions is reduced to finding the invariants of the corresponding subalgebra and 
also to the integration of the factor-systems obtained. 

2. S y s t e m s  of  E q u a t i o n s  D e t e r m i n i n g  I n v a r i a n t  S o l u t i o n s .  For all representatives of the rank-1 
optimal system, we give a set of basic invariants J ,  the representation of the solution, and the factor-system 
E/H, where It(aixi) denotes the subalgebra. 

(1) H(aX4+Xs) and d = (zt -(l+l/r ,~, ut -1/~, Ht-2/r The  solutions are invariant under extensions 
of all a -dependent  variables (a  r 0). They describe the class of self-similar (in the narrow sense) fluid motions. 
The solution is represented as follows: u = taqo(~, ~), H = t2a~b(~, ~), ~ = xt-(l+#), and ~ = a -1. The  factor- 
system E~ H is 

1 

~)~o' + ~ '  + [ r  d~ = 0, 2~r - (1 + ~)~r + (~or (1 + 0, (2.1) 
0 

where differentiation is performed with respect to the variable ~. 
For a = 0, we have J = (t, ~, uz -1, Hz-2) .  The  solutions are invariant under extensions of x, u, and 

H. The representation of the solution is as follows: u = z~( t ,  ~) and H = x2r A). The  factor-system E/H 
is 

1 

~ o t + ~ 2 + 2 / r  Ct+3qor  (2.2) 
0 

(2) H(X2-  )(4 + As) and J = ( texp(z) ,  ~, tu, t2H). The solutions are invariant under simultaneous 
displacements in the direction of the x axis, t ime dilatation, and extensions of u and H. The  solution is 
represented in the following form: u = t-lqo(~, ~), H = t-2~b(~, ~), and ~ = texp(x) .  The  factor-system E/H 
is 

1 

+ ~o2/2 + f ~b dA)' -- ~o/~, (~b + ~o~b)' -- 2~b/~. (~ (2.3) 
0 

(3) H(X1 + X5) and Y = (z exp ( - t ) ,  A, u e x p ( - t ) , H e x p ( - 2 t ) ) .  The  solutions are invariant under 
simultaneous displacements with respect to t and under extensions of z, u, and H. The  solution is represented 
as follows: u = ~o(~, A) exp(t),  H = ~b(~, A) exp(2t), and ~ = z e x p ( - t ) .  The factor-system E/H is 

1 
/ ,  

~ + ~ '  + r d~ 0, 2r - ~r + (~r = 0. (2.4) 
J 

0 

(4) H(X3 + X4) and J = (t -~ exp(zt-1) ,  ~, t -~ exp(u), H). The  solutions are invariant under Galilei 
simultaneous transformations along the x axis and under uniform extensions of t and x. The representation 
of the solution is as follows: u = ln(t~(~, )Q), H = ~b(~, ~), and ~ = t -1 exp(x t - ' ) .  The  factor-system E/H is 

1 

(~ ' ( In (~ ( -1 )  -- i) + ~qo [ ~b' dA = O, ~v'~b + qo~b'(ln(~ -1) - l) = O. + (2.~) 
0 

(5) H(X4) and J = (xt -1, ~, u, H). The solutions are invariant under uniform extensions of the variables 
t and x. They describe the class of self-similar fluid motions. The representation of the solution is as follows: 
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u = ~(~, A), H = r A), and ~ = xt -1. The factor-system E / H  is 

1 

+ ~r ] r  = 0, - ~ r  (~pr = 0. (2.6) 
0 

(6) H(X1 + )(3) and J = (x - t2/2, A,u - t, H). The solutions are invariant under simultaneous 
displacements with respect to t and under Galilei transformations. The solution is represented as follows: 
u = ~p(~, A) + t, Y = r A), and ~ = x - t2/2. The factor-system E l Y  is 

1 

+ ~ '  + ] r  dA = 0, (~pr = 0. (2.7) 1 
0 

(7) H(Xs)  and J = (t, A, x - tu, H). The solutions are invariant under Galilei transformations. They 
describe the class of Galilei-invariant solutions. The representation of the solution is as follows: u = (x - 
tp(t, A))t -1 and H = r  A). The factor-system E / H  is 

~t  = 0, Ct + Ct -1  = 0. (2.8)  

(8) H(X2) and J = (t, A,u, H). The solutions are invariant under displacements on the x axis. The 
representation of the solution is u = qo(t, A) and H = r  A). The factor-system E / H  is 

qot = 0, r  = 0. (2.9) 

(9) H(X1) and J = (x, A, u, H). The solutions are invariant under time dilatations. They  describe the 
class of stationary fluid motions. The representation of the solution is u = ~p(x, A) and H = r  A). The 
factor-system E / H  is 

1 

~ x  + f f x d A  = 0, (qor = 0. (2.10) 
0 

In all the cases enumerated above, one can reduce the factor-systems to a single equation. In what 
follows, the change of variables and the forms of the resulting integro-differential equations are given. 

(1) Making a change of the dependent variables 

0 

one reduces the factor-system (2.1) for/3 ~ - 3  -1 to the equation 

1 

w2w " + 2~w(w ' )  2 - Z(1 + Z)~(w') 3 - (w') 3 f c ( ~ ) w 3 a - l ( 3 Z ( w ' )  2 + .,~,,") d.X = n 
0 

The functiol s qa and r that  determine the invariant solution are expressed via w according to the formulas 
= (1 +/3)~ - w/w'  and r = C(A)w3~w ', where C(A) is an arbitrary function. 

In the case/3 = - 3  -1, to define the function w = qa - (2/3)~, we obtain the equation 

1 

, / w ~  + 3 - ~ w  - ( 2 / 9 ) ~  - c ( ~ ) ~ - ~  ' d ~  = o. 

0 

The functions ~ and ~/, are expressed via w by the formulas ~o = w + (2/3)~ and ~/, = C(A)w -~. 

Let w ( t , A ) =  exp ( / ~ ( s , A ) d s )  be a new desired function. The factor-system (2.2) is then reduced 
% 

\ J  / 

o 
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to the integro-differential equation 

1 

wtt -4- 2w / C(A)w -3 dA = 0, (2.11) 
o 

while the functions qv and r are related to w by the formulas ~ = wtw -1 and r = C(X)w -3. 
(2) Changing the independent and dependent variables 

T 

r = ln~, W(T,A) = exp ( / ( ~ ( s , A ) +  1) -1 ds), 
0 

one reduces the factor-system (2.3) to the equation 

1 

w2w~ - wr - ,1, c ( a ) ( ~ w ~  + ~ )  da = o. (2.12) 
0 

The functions ~o and ~b that  determine the invariant solution are expressed via w by the formulas ~o = ww71 - 1 
and ~ = O(X)WWr. 

(3) Changing the dependent variable w(C,~)--exp (f(~-~,(~,a))-' d~), one reduces the factor- 
0 

system (2.4) to the equation 

1 

w2w" + w(w') 2 - (wt)3~ - (wt) 3 f O(X)w(ww" + 2(w') 2) dA = 0. 

0 

The functions ~ and ~b are expressed via w by the formulas ~o = ( - w/w' and ~ = C(A)w2w '. 
(4) Changing the dependent variable 

to(~, A ) = e x p ( - / ( s l n ( ~ o ( s , A ) s - 1 ) - l ) - l d s ) ,  
0 

one reduces the factor-system (2.5) to the equation 

1 

(w2w,, + w2w, _ ~2(w,)3 + (3(~,)3 j(  c ( ~ ) ( ~ '  + (w") da = 0. 

0 

The functions ~ and ~b are expressed through w by the formulas ~o = ~ exp(1 - w ( ~ w ' )  -1) and ~, = -C(A)~w'.  

(5) Changing the dependent variable w(~,A)=exp(/(s-~o(s,A)) -1 ds), one reduces the factor- 
0 

system (2.6) to the equation 

1 

~ , ,  _ (~,)3 / c(~)~" d~ = O. 
o 

The functions ~, and ~b are expressed via w by the formulas qv = ~ - w/w' and ~b = C(A)w'. 
3. I n v a r i a n t  So lu t i ons .  The results of integration of some factor-systems are given, and the solutions 

found are analyzed. 
(A) Subsystems (2.1). For/3 = - 2  -1, system (2.1) is integrated, and the solution is of the form 

( 

~/~, ~/-- ~-'~ �9 ,/4-1~ + ~ /~ / -  ~/~/, ~/~, ~/= ~'/~//~/~//~- ~ / / - '  ox~ ( - / / , -  ~/-' .,). 
0 
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1 

Here C(A) and D(A) are arbi trary functions, and r/(~) is found from the equation 7/= [ r dA. We consider 
J 
0 

the flow region, where qo - 2-1~ < 0. Let D(A) = 1, C'(A) > 0, C(1) = CI, and C(0) = Co. For definition of 
the function r/, we obtain the equation 

ct  
r/(~) = / ( ~ 2 +  4 C -  8q(~))- lD exp ( -  f ( r 2 +  4C - 8 r / ( r ) )  -1'2 d r ) d C ,  

Co 0 

whose solution can be found by the  method  of successive approximations.  The function r/i is defined by the 
substi tution of the function r/i-1 calculated at the previous step into the r ight-hand side of the equation 
considered. The approximation r/0 = q(0), which is found from the equation v/CI - 2q0 - ~/C0 - 2r/0 = r/0, is 
chosen as the initial one. After the  inequality 2~/01 - Co + 4 ~< Co is satisfied, the iteration process converges 
for any ~/> 0. 

1 

Under the assumption tha t  [ r  = l~ 2, 0 < l = c o n s t  < 9 -1, and - 1 / 3  < /5  ~< 0, integration of the 
0 

factor-system (2.1) produces the  solution given in [10]. 
In the case l = 9 -1 and 15 = - 2 / 3 ,  we have the solution 

u = 2z(31) -1 + 3-1f l l (A)fz(A)t  -2/3, H = -3(f~(A)f21(A)x21-2 + 2fl(A)xt -s/3 + f2(A)t-4/3), 
1 1 

f f j ( A ) d A = O  ( j = l ,  2), / g ( A ) f ~ l ( A ) d A = - 2 7  -1. 
0 0 

The flow is vortex, and the free-boundary equation is y = x2(31) -2. 
(B) Subsystem (2.2). We search for the solution of Eq. (2.11) in the form w = a(A)gl(t) + b(A)g2(t). 

It is assumed that  d'(A) = C(A)(a(A)) -3 > 0, d(A) = b(A)(a(A)) -1, d, = d(1), and do = d(0). As a result of 
integration of Eq. (2.11) and transi t ion to the initial functions qO and r  we find their parametr ic  representations 

(dl - d(A))klf2(r) - f ( r ) f ' ( r ) ,  
= = - do + (d l  - d( ))Cklr + k2)  (3 .1)  

(dl -- do)Zd'(A)f3(r) 
r  = [ d ( A ) - d o W ( d l - d ( A ) ) ( k l r W k 2 ) ]  3' t = j F - 2 ( v  ' ) d r ' ,  r > / 0 .  

0 

Here F(r) = (dl - do)kl2[(kl r + k2 - 1) ln (k l r  + k2) - (klr + k2)] + k3r + k4, kl > 0, k2 > 0, and k3 and k4 
are the integration constants. 

The function F(r) is de termined for r > 0 and is concave. The  inequality H > 0 is fulfilled if F(r) > O. 
The free-boundary equation y = h(t, x) = ~t(r, x) is given by the formula 

h(r ,  x) = 2-1(dl  - do)(F(r))3(1 + ( k i t  "~ k2)-1)(]r q- k 2 ) - l x  2 (3.2) 

and is shaped like a parabola with branches directed upward at each fixed moment  of time. Analysis shows 
that  the initial data  determine one of three possible flow regimes. For t = 0, the free boundary is specified by 
the formula y = lx 2 (the constant  l > 0 is determined by the initial data). 

Regime No. 1. F(r) > O, F'(r) < 0, and F(rl) = 0. The  parameter  r varies from 0 to r l ,  and the 
t ime t varies from zero to infinity. By virtue of (3.2) and the  behavior of the function F ,  the depth falls off to 
zero for t = oo with time. The  horizontal velocity component  u = xq3 is positive for x > 0 and negative for 
x < 0 (r  < rl),  and, hence, the fluid outflows at infinity. 

oo 

No. 2. F(r) > 0 and F'(r) > 0. The t ime t varies from 0 to tl = / F - 2 ( r )  < o~z, because the Regime 
, g  

0 
integral converges. For finite t ime,  the depth becomes infinite everywhere, except for the point x = 0, which 
occurs owing to fluid inflow from infinity. 
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Regime No. 3. F ( r )  > 0, F ' ( r )  < 0 (0 ~< r < r0), and F ' ( r )  > 0 (to < r < r l ) .  The t ime t varies from 
0 to tl < oo. This case is a combination of the two previous ones. Regime No. 1 is realized before the definite 
moment to = t(ro) < t~, and regime No. 2 occurs for t > to. 

The solution considered admits the following: u = z~o(t, A) + ~o~(t, A) and H = z2~b(t, A) + Z~bl(t, A) + 
~b2(t, A). The functions ~o and ~b are found from system (2.2), and for determination of the functions ~oi, ~bl, 
and ~b2, we obtain the equations 

1 

0 

We give the following particular solutions: 
(1) The functions ~o and ~b are given by formulas (3.1), 

t 
f 

0 

this solution is similar to that  considered above, but the depth at the point x --- 0 is greater than zero; 
(2) Assuming the functions ,p and 'Pl be equal to zero, we find the solution 

u = (x + C2(A))(t 4- C,(A)) -I, H = Ca(A)(t 4- C, (A)) -1. (3.3) 

Let the initial data for system (1.3) be of the form 

l 

u(0, z,A) = a(A)x + b(A), H(0, z , A ) =  H0(A) .[a(A) r 0, H0(A) > 0, J H0(A) dA = ho < oo[.j 
[ -  

0 

Formula (3.3) with the functions CI(A) = a- l (A) ,  C'2(A) = b(A)a-l(A),  and Ca(A) = H0(A)a-I(A) gives the 
solution of this Cauchy problem. If a(A) > 0, the solution is determined for all t i> 0 and describes the 
compression of a liquid strip under the action of pressure. The depth h(t) decreases with t ime from h0 at 
t = 0 to zero at t = oo. The horizontal velocity component is positive for a: 4- b(A)a-~(A) > 0 and negative for 
x 4- b(X)a-1(X) < 0, and, hence, the fluid outflows to infinity. In the case a(X) < 0, the solution is determined 
for t E [0, M], M = - m i n a - ~ ( A ) ,  and describes the reverse process. The depth increases with t ime owing 
to fluid inflow from infinity. At time t = M, the depth can be finite or infinite, depending on the initial 
distribution. 

(C) Subsystem (2.3). Let us consider Eq. (2.12). It is easy to see that the function w ( r ,  A) = a ( A ) r + b ( A )  
1 

is a solution if 1 + / C ( A ) ( a ( ~ ) )  2 dA = 0. In going to the initial functions ~ and r and assuming that 

0 

C(A) = (a(A)) -2, we obtain the following invariant solution: 

u = (z + lnt  + d(A) - 1)t -~, H = - ( z  + ln t  + d(A))t -2. (3.4) 

Solution (3.4) is determined for x < - M  - lnt,  where M = maxd(X). The free boundary is shaped like a 
straight line with the angular coefficient - t  -2. In the solution domain, the function u( t ,  x,  A) < 0. 

(D) Subsystem (2.9). The factor-system (2.9) describes the class of steady-state vortex flows. They 
were analyzed comprehensively by Varley and Blythe [3]. 

(E) Subsystem (2.10). The solution of the factor-system (2.10) u = u(A) and H = H(A) describes shear 
flows. In the Euler coordinate system, the solution is of the form u = u(y) ,  v = 0, and h = const. 

1 

The invariant solution u = t, H = ( z  - t 2 / 2 ) a ( A ) ,  and / a (A)dA = - 1  is constructed using the (F) 
0 

subalgebra X1 + X3 and )(4 + Xs. In the Euler coordinates, it is of the form u = t, v = 0, and h = t2 /2  - z .  
Let x = t2 /2  - ho be a rigid wall (h0 is a positive constant); u = z ' ( t )  = t and h = h0 on it; the function 
h(t ,  z) = 0 at the point x = t2 /2 ,  and, hence, ~he fluid is in the triangle t2 /2  - ho <~ x <<. t2 /2  0 <<. y <~ t2 /2  - x 
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at each moment of t ime and its velocity relative to the coordinate system moving with velocity ~ is equal to 
zero. The flow considered can be interpreted as the uniformly accelerated motion of a liquid wedge at rest. 
This solution admits a generalization. The following formulas describe a similar vortex flow: 

1 

u = t + f(A), g = (x - t2/2)a(A) - t f(A)a(A) +g(A),  / a ( A ) d A  = 
o 

Unsteady-State Flows with a Critical layer. We use here the methods developed by Varley and Blythe 
[3] in a study of flows with a critical layer and obtain a class of exact solutions that  describe nonstationary 
fluid motions, with the formation of backward-flow regions. 

As a result of integration of the factor-system (2.7), we find the solution 

u = t + ~ / 2 ( C ( A ) - ~ - h ) ,  H = D ( A ) ( u - t )  -1, ~ = x - ~ 2 / 2 ,  (3.5) 

1 

where the function h(~) is defined from the equation F = h - / H  dA = 0. 
0 

Sign alteration occurs for C(A) = ~ + h(~). We consider the flow region in which (u - t) does not 
change sign. In what follows, we assume that  D()~) = - 1  and C(A) is a strictly increasing and continuously 
differentiable function. We use the minus sign in the formula that  expresses velocity. We denote the minimum 
value of Crn by C(A). In this case, the equation for determination of h(~) is of the form 

1 

F(h ,  ~) = h - / ( 2 ( C ( A )  - ~ - h)) -1/2 dA = 0. (3.6) 

0 

Let us analyze Eq. (3.6) from a qualitative point of view. The function F(h,  ~) is defined in the domain 
h + ~  ~< Cm (0 ~< h < oo). For h + ~  < Ca ,  there are arbitrary continuous functions F(h,~) ,  the derivative with 
respect to ~ and the secondary derivative being negative. There exists a unique value ~0 E (--oo, Cm - h0] such 
that F(ho,~o) = O, because F(ho,~) --~ h0 > 0 for ~ ~ - o o  and F(ho,~) ~ ho - b <<, 0 for ~ --~ Cm - h0 and 

1 

F~ < 0 in the cross sections h = h0, h0 E (0, b], where b = ] (2 (C(A)  - Cm)) -1/2 dA [the integral converges by 
0 

virtue of the conditions to which the function C(A) is subject]. The equation F(h,  ~0) = 0 has a single root in 
the cross sections ~ = ~0 [~0 E (--oo, a)] and a = Cm - b ,  because F(0,~0) < 0 and F(Cm-~o ,~o)  = a - ~ o  > O, 
and Fh(h,~o) can change sign only once (Fhh < 0). 

Now let us consider the  function F(h,~) in the cross sections ( = (0 /> a. The function F vanishes 
twice with variation of h from 0 to b in the cross section ~ = a. Indeed, F(b, a) = 0 and Fh --~ - o o  for h ~ b. 
This means that for some h, which are close enough to b, we have F(h,  a) > 0, F(0,  a) < 0. Thus, there is a 
value of h0 (0 < h0 < b) such that  F(ho, a) = 0 (the value of h0 is unique owing to the convexity of F over 
h). There is no difficulty in seeing that  for the ~0 values close to a, the function F(h,~o) vanishes twice when 
h ranges from 0 to Cm - ~0. We denote the maximum value of ~0 at which the equation F(h,  ~o) = 0 has a 
root by d ~a < d < Cm). Let h0 be the root of the equation F(h,  d) = O. At this point, we then have 

1 

1 - [ H(u - t) -2 dA = Fh O, 
0 

and, according to [5], the curves x - (1/2)t 2 = ~ = coast are the characteristics. 
Figure 1 shows the curve F(h,~) = O, which corresponds to the function C(A) = A + 3. In this case, 

Cm = 3, d ~ 1.885, a = 3 - V~, and b = v~.  For the initial coordinate x = ~ + t2/2, the curve in Fig. 1 
corresponds to t ime t = 0. At any other moment of t ime t = to, the diagram of the equation is obtained 
by shifting the quanti ty t~/2 to the right along the x axis, which corresponds to the uniformly accelerated 
motion. The derivative of the function h(~) is of the form h' = (1 - Fh)F[  1. With variation in the function 
C(A), the qualitative behavior of this curve remains. 
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The foregoing considerations show that  the equation F(h,~) = 0 has two branches of solutions for 
< d. The  lower branch hl(~) is determined for all ~ < d. Formulas (3.5) with a free boundary h = hi(()  

specify an invariant solution in this interval; in the flow region, (u - t) does not change sign (there is no critical 
layer). The  upper  branch h2(~) is determined for ~ E [a, d]. Let us consider the problem of the extension of 
solution (3.5) with the  function h = h2(~) to the ~ < a region. As a result, we construct  a solution that  
describes the nonstat ionary flow with a critical layer. For ~ ~< a, we specify the free-boundary equation h2(() 
arbitrarily and require satisfaction of the following conditions: (1) h2(a) = b; (2) h~2(a) = -1 ;  (3) h~(~) > - 1  
and h2(~) > hl(~) (~ < a); (4) h2(~) ~ 0 and h~(~) ---* 0 (~ --~ -oo ) .  

For ~ ~< a, we specify the upper boundary of the backward-flow region by the equation y = g(~), where 

1 

g(~) ---- h2(~) - - / ( 2 ( C ( ) ~ )  -- ~ -- h2(~)))  -1/2 d,X, 
0 

(3.7) 

the lower boundary of this region being y = 0. In the region 0 ~< y ~< g(~), we construct  the flow possessing 
the following property: in a definite curve lying in this region, the function u changes sign, and the streamlines 
in the coordinate system moving with velocity t are arranged as shown in Fig. 2. For ~ < a, we determine the 
solution by formulas (3.5) with the given function h = h2(~) in the outer region (from the boundary of the 
backward-flow region to the free boundary) and by the formulas 

u = t :F ~/2(Q(A) - ~ - h2(~)), H = (u - t) -1, ( 3 . s )  

where Q(•) is a desired function in the backward-flow region; the plus sign is taken for 0 <~ ~ ~< it, and the 
minus sign is taken above the line u = 0 for # ~> v /> 0 [the value of #(~) is determined by the equation 

- - h2( ) = 0)1 .  
Integrating the function H over ~ from 0 to/~, we find the height of the curve u = 0, and integration 

from/~ to 0 in the region above the curve u = 0 determines the thickness of the backward-flow zone. Equating 
this quanti ty to the function g(~) specified by formula (3.7), we derive the following integral equation for 
determination of Q(A): 

2 / ( 2 ( Q ( ~ )  - ( - h2(~))) -1/2 d~ = g(~). (3.9) 

0 

Let us change the variables 77 = h2(~) + ~ and s = Q()~). By virtue of the conditions in h2(~), the function 
y(~) is invertible for ~ < a. This change reduces (3.9) to the Abel equation 

Y 
--V/2 / T(3)(3 -- 77)--1/2 d3 -~- g(~(~7)) -- a ( ~ ) .  

Cm 
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Here the function r ( s )  = - ( Q ' ( A ( s ) ) ) - '  = w -1 is unknown. The  solution of the Abel equation is of the form 
S 

r ( s )  = / - 

Grn 

Now the function Q(A) can be defined by solving the exact differential equation: T(Q)dQ + dA = O, 

Q(0) = cm. 
We give the example of the  solution expressed in elementary functions. Let C(A) = A+3,  and, for r /<  3 

(~ < a = 3 - v / 2 ) ,  the free boundary  be given as follows: h(~(r/)) = ~z(r/) = ~ / ~ - 3 -  r / ) (3 .5-  r / ) - '  + V / ~  - r / ) -  

~ / ~  - r/). The  backward-flow boundary is then determined by the function y = G(r/) = r  - r/)(3.5-r/) -1 . 

The  curve u = 0 is given by the  equation y = 2- 'G(r/) ,  the  function Q is determined in the form Q(A) = 

3 + 2 - ' ( 1  - (1 - A)-2), and/~(~(r/)) = ~(r/) = 1 - r  - r / ) - ' .  
The  free boundary,  the  backward-flow region, and the curves u = 0 and the streamlines are shown in 

Fig. 2 at t ime t = 0. For t > 0, the  flow pat tern is obtained by shifting to the right by the quant i ty  t2]2 along 
the x axis. 

Change of the Type of a System of Equations in Flow Evolution. We give a solution where Eqs. (1.3) 
change the type with time. We consider the invariant solution 

u = ( x  - - 1 ,  n = D(X)t-' (3.10) 

obtained after integration of the factor-system (2.8). It is of the form u = (x - C ( t y ) ) / t ,  v = - y / t ,  and 
h = c o n s t / t  in the Euler coordinate system. This solution describes vortex flow with a pressure-compressed 
fluid layer. 

The necessary and sufficient hyperbolicity conditions of integro-differential shallow-water equations 
with a monotone-in-depth profile, which were given in [4], are as follows: 

X + # 0, a~ = Aarg  X + ( u ) l x - ( u )  = 0 (3.11) 

(the increment of the argument  of the complex function X is calculated with variation of the A values from 
zero to unity with fixed t and x). The  functions X+(U) are of the form 

Ul 

"X4"(u(A)) ---- 1 q-w11(u1 -- u) -1 - w o l ( u o  -- u) -1 - - / ( ~ - l ) v ( v  -- u) -1 dv T 7ri(w-1)u, 
UO 

(3.12) 

where ~ = u x H - '  = - w ,  and the subscripts 0 and 1 refer to the functions for A = 0 and 1. 
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Conditions (3.11) guarantee the absence of complex roots in the equation 

Ul 

= / ~ - l ( u  - k) -2 du, 1 
uo 

which determines the velocities k of propagation of the characteristics according to [5]. 
We show that  complex characteristic roots can appear with time in the initial solution subject to 

conditions (3.11). Probably, this means the loss of flow stability. Assume that D(A) - 1 in formula (3.10), 
and the function C(A) are specified unambiguously by the equation 

C 3 + 9-1C - 2 -1 + A = 0. (3.13) 

Equation (3.13) has one real and two imaginary roots for each A E [0, 1]. Note that  the derivative function 
C(~), which corresponds to vorticity, does not vanish and does not become infinite, because w = C'(A) = 
- ( 3 C  2 + 9-1) -1. Owing to Eq. (3.13), we have C(1/2) = 0 and -C1 = - C ( 1 )  = C(0) = Co --~ 0.747. 

The velocity profile of the solution (3.10) is shown in Fig. 3 for z = Co and t = 1 (for other values of 
x and t, the diagram is obtained by shifting along the horizontal axis and by an appropriate change in the 
scale). 

Let us verify the satisfaction of conditions (3.11) for the solution considered. In this case, the functions 
X + specified by formula (3.12) are of the form 

x+(C)= l +(3C~ +9-1)(Co+C)- l t  +(3C2o +9-1)(Co - C) - l t  - 12Cot-6Ct ln I(C-Co)(C +Co)-ll • 67rCti. 

We verify the hyperbolicity conditions in terms of the functions ~•  defined by the formula 

�9 + = (C o - c 2 ) x •  (3.14) 

and having no poles at the points C = +Co. 
Figure 4a-c shows the diagrams of the function @+(C) with variation of C from Co to C1 at times 

t = 0.1, 0.239, and 0.3, respectively; the Re@+(C) values are plotted as the abscissa, and the Imq2+(C) 
values are plotted as the ordinate (the diagrams of the function @-(C) are similar, but the circumvention is 
performed in the opposite direction). The imaginary part of the functions @+(C) vanishes for C = - C I ,  0, 
and C1, and the functions themselves take the following values at these points: 

�9 • = k~:t:(C1) = 2Co(3C 2 + 9-1)t > 0 (t > 0), ~4(0)  = Co 2 - 2Co(3C 2 - 9 -1)t.  

At moment t = t. = 2-1C0(3C02 - 9 - I )  -1 ~ 0.239, the function ~+ vanishes at the point C = 0 (see Fig. 4b), 
which leads to the violations of conditions (3.11). As follows from Fig. 4a, the increment of the argument of 
the functions ~ + ( C )  is equal to zero, and, hence, ~e = 0, and conditions (3.11) are satisfied for t = 0.1. At 
t = 0.3, based on Fig. 4c, we conclude that A arg ~+(C)  = 27r and A arg ~ - ( C )  = - 2 r ,  and, hence, ~e = 47r. 
In this case, the hyperbolicity conditions are violated. The relatively simple form of the functions ~+  given 
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by formula (3.14) allows us to make a qualitative analysis and to draw a conclusion that for any t from the 
interval [t0(t,) (0 < to < t,), conditions (3.11) are satisfied, and, for the solution considered, system (1.3) is 
hyperbolic. With t > t,, the hyperbolicity conditions break down, which means the presence of the complex 
characteristic roots which separate from the continuous real spectrum at moment t = t,. Thus, this example 
shows that system (1.3) can change its type in the process of flow evolution. With the fluid strip compressed, 
it is possible for a long-wave instability to appear in some distributions of the initial vorticity. 
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discussion of the results, and helpful comments. 
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